Input-specific GABAergic signaling to newborn neurons in adult dentate gyrus.

نویسندگان

  • Sean J Markwardt
  • Jacques I Wadiche
  • Linda S Overstreet-Wadiche
چکیده

Adult neurogenesis is the multistage process of generating neurons from adult neural stem cells. Accumulating evidence indicates that GABAergic depolarization is an important regulator of this process. Here, we examined GABAergic signaling to newly generated granule cells (GCs) of the adult mouse dentate gyrus. We show that the first synaptic currents in newborn GCs are generated by activation of GABA(A) receptors by GABA with a spatiotemporal profile suggestive of transmitter spillover. However, the GABAergic response is not attributable to spillover from surrounding perisomatic synapses. Rather, our results suggest that slow synaptic responses in newborn GCs are generated by dedicated inputs that produce a relatively low concentration of GABA at postsynaptic receptors, similar to slow IPSCs in mature GCs. This form of synaptic signaling drives robust phasic depolarization of newborn GCs when the interneuron network is synchronously active, revealing a potential mechanism that translates hippocampal activity into regulation of adult neurogenesis via synaptic release of GABA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABAergic signaling to newborn neurons in dentate gyrus.

Neurogenesis in the dentate gyrus begins before birth but then continues into adulthood. Consequently, many newborn granule cells must integrate into a preexisting hippocampal network. Little is known about the timing of this process or the characteristics of the first established synapses. We used mice that transiently express enhanced green fluorescent protein in newborn granule cells to exam...

متن کامل

Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells.

Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initia...

متن کامل

Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis.

GABAergic transmission regulates adult neurogenesis by exerting negative feedback on cell proliferation and enabling dendrite formation and outgrowth. Further, GABAergic synapses target differentiating dentate gyrus granule cells prior to formation of glutamatergic connections. GABA(A) receptors (GABA(A) Rs) mediating tonic (extrasynaptic) and phasic (synaptic) transmission are molecularly and ...

متن کامل

Studying the Integration of Adult-born Neurons

Neurogenesis occurs in adult mammalian brains in the sub-ventricular zone (SVZ) of the lateral ventricle and in the sub-granular zone (SGZ) of the hippocampal dentate gyrus throughout life. Previous reports have shown that adult hippocampal neurogenesis is associated with diverse brain disorders, including epilepsy, schizophrenia, depression and anxiety (1). Deciphering the process of normal an...

متن کامل

Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases

Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 48  شماره 

صفحات  -

تاریخ انتشار 2009